GATE SOLVED PAPER - EE

ELECTRICAL \& ELECTRONIC MEASUREMENTS

YEAR 2013
ONE MARK
Q. 1

Three moving iron type voltmeters are connected as shown below. Voltmeter readings are V, V_{1} and V_{2} as indicated. The correct relation among the voltmeter readings is

(A) $V=\frac{V_{1}}{\sqrt{2}}+\frac{V_{2}}{2}$
(B) $V=V_{1}+V_{2}$
(C) $V=V_{1} V_{2}$
(D) $V=V_{2}-V_{1}$
Q. 2 The input impedance of the permanent magnet moving coil (PMMC) voltmeter is infinite. Assuming that the diode shown in the figure below is ideal, the reading of the voltmeter in Volts is

(A) 4.46
(B) 3.15
(C) 2.23
(D) 0

YEAR 2013

TWO MARKS
Q. 3

Two magnetically uncoupled inductive coils have Q factors q_{1} and q_{2} at the chosen operating frequency. Their respective resistances are R_{1} and R_{2}. When connected in series, their effective Q factor at the same operating frequency is
(A) $q_{1}+q_{2}$
(B) $\wedge 1 / q_{1} \mathrm{~h}+{ }^{\wedge} 1 / q_{2} \mathrm{~h}$
(C) ${ }^{\wedge} q_{1} R_{1}+q_{2} R_{2} \mathrm{~h} / \wedge R_{1}+R_{2} \mathrm{~h}$
(D) ${ }^{\wedge} q_{1} R_{2}+q_{2} R_{1} \mathrm{~h} / \wedge R_{1}+R_{2} \mathrm{~h}$ a nominal resistance without any load as $R_{s}=300 \mathrm{~W}$. Other bridge resistances are $R_{1}=R_{2}=R_{3}=300 \mathrm{~W}$. The maximum permissible current through the strain gauge is 20 mA . During certain measurement when the bridge is excited by maximum permissible voltage and the strain gauge resistance is increased by 1% over the nominal value, the output voltage V_{0} in mV is

(A) 56.02
(B) 40.83
(C) 29.85
(D) 10.02

YEAR 2012
Q. 5 A periodic voltage waveform observed on an oscilloscope across a load is shown. A permanent magnet moving coil (PMMC) meter connected across the same load reads

(A) 4 V
(B) 5 V
(C) 8 V
(D) 10 V
Q. 6 The bridge method commonly used for finding mutual inductance is
(A) Heaviside Campbell bridge
(B) Schering bridge
(C) De Sauty bridge
(D) Wien bridge
Q. 7 For the circuit shown in the figure, the voltage and current expressions are $v(t)=E_{1} \sin (w t)+E_{3} \sin (3 w t)$ and
$i(t)=I_{1} \sin \left(w t-\boldsymbol{f}_{1}\right)+I_{3} \sin \left(3 w t-\boldsymbol{f}_{3}\right)+I_{5} \sin (5 w t)$
The average power measured by the wattmeter is

(A) $\frac{1}{2} E_{1} I_{1} \cos f_{1}$
(B) $\frac{1}{2}\left[E_{1} I_{1} \cos f_{1}+E_{1} I_{3} \cos f_{3}+E_{1} I_{5}\right]$
(C) $\frac{1}{2}\left[E_{1} I_{1} \cos \boldsymbol{f}_{1}+E_{3} I_{3} \cos \boldsymbol{f}_{3}\right]$
(D) $\frac{1}{2}\left[E_{1} I_{1} \cos f_{1}+E_{3} I_{1} \cos f_{1}\right]$

YEAR 2012
TWO MARKS
An analog voltmeter uses external multiplier settings. With a multiplier setting of 20 kW , it reads 440 V and with a multiplier setting of 80 kW , it reads 352 V . For a multiplier setting of 40 kW , the voltmeter reads
(A) 371 V
(B) 383 V
(C) 394 V
(D) 406 V

YEAR 2011
ONE MARK
Q. 9 A dual trace oscilloscope is set to operate in the ALTernate mode. The control input of the multiplexer used in the y-circuit is fed with a signal having a frequency equal to
(A) the highest frequency that the multiplexer can operate properly
(B) twice the frequency of the time base (sweep) oscillator
(C) the frequency of the time base (sweep) oscillator
(D) haif the frequency of the time base (sweep) oscillator

Consider the following statement
(1) The compensating coil of a low power factor wattmeter compensates the effect of the impedance of the current coil.
(2) The compensating coil of a low power factor wattmeter compensates the effect of the impedance of the voltage coil circuit.
(A) (1) is true but (2) is false
(B) (1) is false but (2) is true
(C) both (1) and (2) are true
(D) both (1) and (2) are false
Q. 10

The bridge circuit shown in the figure below is used for the measurement of an unknown element Z_{X}. The bridge circuit is best suited when Z_{X} is a

(A) low resistance
(B) high resistance
(C) low Q inductor
(D) lossy capacitor

YEAR 2011
TWO MARKS
A $4 \frac{1}{2}$ digit DMM has the error specification as: 0.2% of reading +10 counts. If a dc voltage of 100 V is read on its 200 V full scale, the maximum error that can be expected in the reading is
(A) $\geq 0.1 \%$
(B) $\geq 0.2 \%$
(C) $\mathbf{~} 0.3 \%$
(D) $\geq 0.4 \%$

YEAR 2010

A wattmeter is connected as shown in figure. The wattmeter reads.

(A) Zero always
(B) Total power consumed by Z_{1} and Z_{2}
(C) Power consumed by Z_{1}
(D) Power consumed by Z_{2}

An ammeter has a current range of 0-5 A, and its internal resistance is 0.2 W . In order to change the range to $0-25 \mathrm{~A}$, we need to add a resistance of
(A) 0.8 W in series with the meter
(B) 1.0 W in series with the meter
(C) 0.04 W in parallel with the meter
(D) 0.05 W in parallel with the meter

The pressure coil of a dynamometer type wattmeter is
(A) Highly inductive
(B) Highly resistive
(C) Purely resistive
(D) Purely inductive
Q. 17 The two inputs of a CRO are fed with two stationary periodic signals. In the X-Y mode, the screen shows a figure which changes from ellipse to circle and back to ellipse with its major axis changing orientation slowly and repeatedly. The following inference can be made from this.
(A) The signals are not sinusoidal
(B) The amplitudes of the signals are very close but not equal
(C) The signals are sinusoidal with their frequencies very close but not equal
(D) There is a constant but small phase difference between the signals

The figure shows a three-phase delta connected load supplied from a 400 V , 50 $\mathrm{Hz}, 3$-phase balanced source. The pressure coil (PC) and current coil (CC) of a wattmeter are connected to the load as shown, with the coil polarities suitably selected to ensure a positive deflection. The wattmeter reading will be

(A) 0
(B) 1600 Watt
(C) 800 Watt
(D) 400 Watt

An average-reading digital multi-meter reads 10 V when fed with a triangular wave, symmetric about the time-axis. For the same input an rms-reading meter will read
(A) $\frac{20}{\sqrt{3}}$
(B) $\frac{10}{3}$
(C) $20 \quad \overline{3}$
(D) $10 \cdot 13$

Two 8 -bit ADCs, one of single slope integrating type and other of successive approximate type, take T_{A} and T_{B} times to convert 5 V analog input signal to equivalent digital output. If the input analog signal is reduced to 2.5 V , the approximate time taken by the two ADCs will respectively, be
(A) T_{A}, T_{B}
(B) $T_{A} / 2, T_{B}$
(C) $T_{A}, T_{B} / 2$
(D) $T_{A} / 2, T_{B} / 2$

Two sinusoidal signals $p\left(w_{1}, t\right)=A \sin w_{1} t$ and $q\left(w_{2} t\right)$ are applied to X and Y inputs of a dual channel CRO. The Lissajous figure displayed on the screen shown below:
The signal $q\left(\mathrm{~W}_{2} t\right)$ will be represented as

(A) $q\left(w_{2} t\right)=A \sin w_{2} t, w_{2}=2 w_{1}$
(B) $q\left(w_{2} t\right)=A \sin w_{2} t, w_{2}=w_{1} / 2$
(C) $q\left(w_{2} t\right)=A \cos w_{2} t, w_{2}=2 w_{1}$
(D) $q\left(w_{2} t\right)=A \cos w_{2} t, w_{2}=w_{1} / 2$

The ac bridge shown in the figure is used to measure the impedance Z.

kHz , then the impedance

If the bridge is balanced for oscillator frequency $f=2$ Z will be
(A) $(260+j 0) \mathrm{W}$
(B) $(0+j 200) W$
(C) $(260-j 200) \mathrm{W}$
(D) $(260+j 200) \mathrm{W}$

(A) $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{A}$
(B) A, B, C, B
(C) $\mathrm{C}, \mathrm{B}, \mathrm{A}, \mathrm{B}$
(D) $\mathrm{B}, \mathrm{A}, \mathrm{B}, \mathrm{C}$

A bridge circuit is shown in the figure below. Which one of the sequence given below is most suitable for balancing the bridge ?

(A) First adjust R_{4}, and then adjust R_{1}
(B) First adjust R_{2}, and then adjust R_{3}
(C) First adjust R_{2}, and then adjust R_{4}
(D) First adjust R_{4}, and then adjust R_{2}

YEAR 2006
Q. 26 A sampling wattmeter (that computes power from simultaneously sampled values of voltage and current) is used to measure the average power of a load. The peak to peak voltage of the square wave is 10 V and the current is a triangular wave of 5 A p-p as shown in the figure. The period is 20 ms . The reading in W will be

(A) 0 W
(B) 25 W
(C) 50 W
(D) 100 W

A current of $-8+62(\sin w t+30) \mathrm{A}$ is passed through three meters. They are a centre zero PMMC meter, a true rms meter and a moving iron instrument. The respective reading (in A) will be
(A) $8,6,10$
(B) $8,6,8$
(C) $-8,10,10$
(D) $-8,2,2$

A variable w is related to three other variables x, y, z as $w=x y / z$. The variables are measured with meters of accuracy $!0.5 \%$ reading, $!1 \%$ of full scale value and $!1.5 \%$ reading. The actual readings of the three meters are 80,20 and 50 with 100 being the full scale value for all three. The maximum uncertainty in the measurement of w will be
(A) ! $0.5 \% \mathrm{rdg}$
(B) $!5.5 \% \mathrm{rdg}$
(C) ! 6.7 rdg
(D) ! 7.0 rdg

A 200 / 1 Current transformer (CT) is wound with 200 turns on the secondary on a toroidal core. When it carries a current of 160 A on the primary, the ratio and phase errors of the CT are found to be -0.5% and 30 minutes respectively. If the number of secondary turns is reduced by 1 new ratio-error $(\%)$ and phaseerror(min) will be respectively
(A) $0.0,30$
(B) $-0.5,35$
(C) $-1.0,30$
(D) $-1.0,25$
R_{1} and R_{4} are the opposite arms of a Wheatstone bridge as are R_{3} and R_{2}. The source voltage is applied across R_{1} and R_{3}. Under balanced conditions which one of the following is true
(A) $R_{1}=R_{3} R_{4} / R_{2}$
(B) $R_{1}=R_{2} R_{3} / R_{4}$
(C) $R_{1}=R_{2} R_{4} / R_{3}$
(D) $R_{1}=R_{2}+R_{3}+R_{4}$

YEAR 2005

ONE MARK
The Q-meter works on the principle of
(A) mutual inductance
(B) self inductance
(C) series resonance
(D) parallel resonance

A PMMC voltmeter is connected across a series combination of DC voltage source $V_{1}=2 \mathrm{~V}$ and AC voltage source $V_{2}(t)=3 \sin (4 t) \mathrm{V}$. The meter reads
(A) 2 V
(B) 5 V
(C) $(2+3 / 2) \mathrm{V}$
(D) $(17 / 2) V$

A digital-to-analog converter with a full-scale output voltage of 3.5 V has a resolution close to 14 mV . Its bit size is
(A) 4
(B) 8
(C) 16
(D) 32

The simultaneous application of signals $x(t)$ and $y(t)$ to the horizontal and vertical plates, respectively, of an oscilloscope, produces a vertical figure-of-8 display. If P and Q are constants and $x(t)=\mathrm{P} \sin (4 t+30 \mathrm{c})$, then $y(t)$ is equal to
(A) $\mathrm{Q} \sin (4 t-30 \mathrm{c})$
(B) $\mathrm{Q} \sin (2 t+15 \mathrm{c})$
(C) $\mathrm{Q} \sin (8 t+60 \mathrm{c})$
(D) $\mathrm{Q} \sin (4 t+30 \mathrm{c})$

A DC ammeter has a resistance of 0.1 W and its current range is $0-100 \mathrm{~A}$. If the range is to be extended to $0-500 \mathrm{~A}$, then meter required the following shunt resistance
(A) 0.010 W
(B) 0.011 W
(C) 0.025 W
(D) 1.0 W

The set-up in the figure is used to measure resistance R.The ammeter and voltmeter resistances are 0.01 W and 2000 W , respectively. Their readings are 2 A and 180 V , respectively, giving a measured resistances of 90 W The percentage error in the measurement is

(A) 2.25%
(B) 2.35%
(C) 4.5%
(D) 4.71%

A 1000 V DC supply has two 1 -core cables as its positive and negative leads : their insulation resistances to earth are 4 MW and 6 MW , respectively, as shown in the figure. A voltmeter with resistance 50 kW is used to measure the insulation of the cable. When connected between the positive core and earth, then voltmeter reads

(A) 8 V
(B) 16 V
(C) 24 V
(D) 40 V

Two wattmeters, which are connected to measure the total power on a three-phase system supplying a balanced load, read 10.5 kW and -2.5 kW , respectively. The total power and the power factor, respectively, are
(A) $13.0 \mathrm{~kW}, 0.334$
(B) $13.0 \mathrm{~kW}, 0.684$
(C) $8.0 \mathrm{~kW}, 0.52$
(D) $8.0 \mathrm{~kW}, 0.334$

A dc potentiometer is designed to measure up to about 2 V with a slide wire of 800 mm . A standard cell of emf 1.18 V obtains balance at 600 mm . A test cell is seen to obtain balance at 680 mm . The emf of the test cell is
(A) 1.00 V
(B) 1.34 V
(C) 1.50 V
(D) 1.70 V

The circuit in figure is used to measure the power consumed by the load. The current coil and the voltage coil of the wattmeter have 0.02 W and 1000 W resistances respectively. The measured power compared to the load power will be

(A) 0.4% less
(B) 0.2% less
(C) 0.2% more
(D) 0.4% more

YEAR 2004
A CRO probe has an impedance of 500 kW in parallel with a capacitance of 10 pF . The probe is used to measure the voltage between P and Q as shown in figure. The measured voltage will be

(A) 3.53 V
(B) 4.37 V
(C) 4.54 V
(D) 5.00 V

A moving coil of a meter has 100 turns, and a length and depth of 10 mm and 20 mm respectively. It is positioned in a uniform radial flux density of 200 mT . The coil carries a current of 50 mA . The torque on the coil is
(A) 200 mNm
(B) 100 mNm
(C) 2 mNm
(D) 1 mNm

A dc A-h meter is rated for $15 \mathrm{~A}, 250 \mathrm{~V}$. The meter constant is $14.4 \mathrm{~A}-\mathrm{sec} / \mathrm{rev}$. The meter constant at rated voltage may be expressed as
(A) $3750 \mathrm{rev} / \mathrm{kWh}$
(B) $3600 \mathrm{rev} / \mathrm{kWh}$
(C) $1000 \mathrm{rev} / \mathrm{kWh}$
(D) $960 \mathrm{rev} / \mathrm{kWh}$

A moving iron ammeter produces a full scale torque of 240 mNm with a deflection of 120 c at a current of 10 A . The rate of change of self induction ($\mathrm{mH} /$ radian) of the instrument at full scale is
(A) $2.0 \mathrm{mH} /$ radian
(B) $4.8 \mathrm{~m} \mathrm{H} /$ radian
(C) $12.0 \mathrm{mH} /$ radian
(D) $114.6 \mathrm{~m} \mathrm{H} /$ radian
Q. 46

A single-phase load is connected between R and Y terminals of a 415 V , symmetrical, 3-phase, 4-wire system with phase sequence RYB. A wattmeter is connected in the system as shown in figure. The power factor of the load is 0.8 lagging. The wattmeter will read

(A) -795 W
(B) -597 W
(C) +597 W
(D) +795 W

A 50 Hz , bar primary CT has a secondary with 500 turns. The secondary supplies 5 A current into a purely resistive burden of 1 W . The magnetizing ampere-turns is 200. The phase angle between the primary and second current is
(A) 4.6 c
(B) 85.4 c
(C) 94.6 c
(D) 175.4 c

The core flux in the CT of Prob Q.44, under the given operating conditions is
(A) 0
(B) 45.0 mWb
(C) 22.5 mWb
(D) 100.0 mWb

YEAR 2003
ONE MARK
A Manganin swap resistance is connected in series with a moving coil ammeter consisting of a milli-ammeter and a suitable shunt in order to
(A) minimise the effect of temperature variation
(B) obtain large deflecting torque
(C) reduce the size of the meter
(D) minimise the effect of stray magnetic fields

The effect of stray magnetic field on the actuating torque of a portable instrument is maximum when the operating field of the instrument and the stray fields are
(A) perpendicular
(B) parallel
(C) inclined at 60
(D) inclined at 30

A reading of 120 is obtained when standard inductor was connected in the circuit of a Q-meter and the variable capacitor is adjusted to value of 300 pF . A lossless capacitor of unknown value C_{x} is then connected in parallel with the variable capacitor and the same reading was obtained when the variable capacitor is readjusted to a value of 200 pF . The value of C_{x} in pF is
(A) 100
(B) 200
(C) 300
(D) 500

The simplified block diagram of a 10-bit A / D converter of dual slope integrator type is shown in figure. The 10 -bit counter at the output is clocked by a 1 MHz clock. Assuming negligible timing overhead for the control logic, the maximum frequency of the analog signal that can be converted using this A / D converter is approximately

(A) 2 kHz
(B) 1 kHz
(C) 500 Hz
(D) 250 Hz

The items in Group-I represent the various types of measurements to be made with a reasonable accuracy using a suitable bridge. The items in Group-II represent the various bridges available for this purpose. Select the correct choice of the item in Group-II for the corresponding item in Group-I from the following

List-I

P. Resistance in the milli-ohm range
Q. Low values of Capacitance
R. Comparison of resistance which are nearly equal
S. Inductance of a coil with a large time-constant

List-II

1. Wheatstone Bridge
2. Kelvin Double Bridge
3. Schering Bridge
4. Wien's Bridge
5. Hay's Bridge
6. Carey-Foster Bridge

Codes :

(A) $\mathrm{P}=2, \mathrm{Q}=3, \mathrm{R}=6, \mathrm{~S}=5$
(B) $\mathrm{P}=2, \mathrm{Q}=6, \mathrm{R}=4, \mathrm{~S}=5$
(C) $\mathrm{P}=2, \mathrm{Q}=3, \mathrm{R}=5, \mathrm{~S}=4$
(D) $\mathrm{P}=1, \mathrm{Q}=3, \mathrm{R}=2, \mathrm{~S}=6$

A rectifier type ac voltmeter of a series resistance R_{s}, an ideal full-wave rectifier bridge and a PMMC instrument as shown in figure. The internal. resistance of the instrument is 100 W and a full scale deflection is produced by a dc current of 1 mA . The value of R_{s} required to obtain full scale deflection with an ac voltage of 100 V (rms) applied to the input terminals is

(A) 63.56 W
(B) 69.93 W
(C) 89.93 W
(D) 141.3 kW

A wattmeter reads 400 W when its current coil is connected in the R-phase and its pressure coil is connected between this phase and the neutral of a symmetrical 3-phase system supplying a balanced star connected 0.8 p.f. inductive load. This phase sequence is RYB. What will be the reading of this wattmeter if its pressure coil alone is reconnected between the B and Y phases, all other connections
remaining as before ?
(A) 400.0
(B) 519.6
(C) 300.0
(D) 692.8

The inductance of a certain moving-iron ammeter is expressed as $L=10+3 q-\left(q^{2} / 4\right) m H$, where q is the deflection in radians from the zero position. The control spring torque is $25 \# 10^{-6} \mathrm{Nm} /$ radian. The deflection of the pointer in radian when the meter carries a current of 5 A , is
(A) 2.4
(B) 2.0
(C) 1.2
(D) 1.0

A $500 \mathrm{~A} / 5 \mathrm{~A}, 50 \mathrm{~Hz}$ transformer has a bar primary. The secondary burden is a pure resistance of 1 W and it draws a current of 5 A . If the magnetic core requires 250 AT for magnetization, the percentage ratio error is
(A) 10.56
(B) -10.56
(C) 11.80
(D) -11.80

The voltage-flux adjustment of a certain 1-phase 220 V induction watt-hour meter is altered so that the phase angle between the applied voltage and the flux due to it is 85 c (instead of 90 c). The errors introduced in the reading of this meter when the current is 5 A at power factor of unity and 0.5 lagging are respectively
(A) $3.8 \mathrm{~mW}, 77.4 \mathrm{~mW}$
(B) $-3.8 \mathrm{~mW},-77.4 \mathrm{~mW}$
(C) $-4.2 \mathrm{~W},-85.1 \mathrm{~W}$
(D) $4.2 \mathrm{~W}, 85.1 \mathrm{~W}$

Group-II represents the figures obtained on a CRO screen when the voltage signals $V_{\mathrm{x}}=V_{\mathrm{xm}} \sin w t$ and $V_{\mathrm{y}}=V_{\mathrm{ym}} \sin (w t+\mathrm{F})$ are given to its X and Y plates respectively and F is changed. Choose the correct value of F from Group-I to match with the corresponding figure of Group-II.

Group-II
Group-I
P. $F=0$
Q. $\mathrm{F}=p / 2$
R. $p<\mathrm{F}<3 p / 2$
S. $\mathrm{F}=3 p / 2$
3.

Codes :

(A) $\mathrm{P}=1, \mathrm{Q}=3, \mathrm{R}=6, \mathrm{~S}=5$
(B) $\mathrm{P}=2, \mathrm{Q}=6, \mathrm{R}=4, \mathrm{~S}=5$
(C) $\mathrm{P}=2, \mathrm{Q}=3, \mathrm{R}=5, \mathrm{~S}=4$
(D) $\mathrm{P}=1, \mathrm{Q}=5, \mathrm{R}=6, \mathrm{~S}=4$

SOLUTIONS

Sol. 1 Option (B) is correct.
For an ideal voltmeter interval resistance is always zero. So we can apply the KVL along the two voltmeters as
or

$$
\begin{aligned}
& V-V_{1}-V_{2}=0 \\
& V=V_{1}+V_{2}
\end{aligned}
$$

Sol. 5

Option (A) is correct.
For the +ve half cycle of I / p voltage, diode will be forward biased ($V_{g}=0$, ideal diode) Therefore, the voltmeter will be short circuited and reads

$$
V_{1}=0 \text { volt }
$$

Now, for - ve half cycle, diode will be reverse biased and treated as open circuit. So, the voltmeter reads the voltage across 100 kW . Which is given by

$$
V_{2}=100 \# \frac{14.140 \mathrm{c}}{100+1}
$$

So, $\quad V_{2, r m s}=\frac{14}{\sqrt{2}}$ volt
Therefore, the average voltage for the whole time period is obtained as

$$
\begin{aligned}
V_{\text {ve }} & =\frac{V_{1}+V_{2}-r m s}{2}=\frac{0+\wedge 14 \mathrm{~h} \quad 2 \mathrm{~h}}{2}=\frac{14}{2 \sqrt{2}} \\
& =4.94-4.46 \mathrm{volt}
\end{aligned}
$$

and
Option (C) is correct.
The quality factor of the inductances are given by

$$
\begin{aligned}
& q_{1}=\frac{w L_{1}}{R_{1}} \\
& q_{2}=\frac{w L_{2}}{R_{2}}
\end{aligned}
$$

So, in series circuit, the effective quality factor is given by

$$
\begin{aligned}
& Q=\frac{\left|X_{L e q}\right|}{R_{e q}}=\frac{w L_{1}+w L_{2}}{R_{1}+R_{2}} \\
&=\frac{R_{1}^{\frac{w L_{1}}{R_{2}}+\frac{w L_{2}}{R_{1} R_{2}^{2}}} \frac{\frac{q_{1}}{R_{2}^{1}}+\frac{q_{2}}{R_{2}^{-}}}{\frac{1}{R_{2}}+\frac{1}{R_{1}}}=\frac{q_{1} R+q R_{1}}{R_{1}+R_{2}}}{\frac{1}{R_{2}}+\frac{1}{R_{1}}}
\end{aligned}
$$

Sol. 4 Option (C) is correct.

Option (A) is correct.
PMMC instrument reads average (dc) value.

$$
\begin{aligned}
V & =\frac{1}{T} \#^{T}=\frac{1}{20 \# 10^{-3}} \#_{0}^{20} \quad v(t) d t \\
& =\frac{1}{20} ; \#_{0}^{\#^{3}} v(t) d t+\#_{10}^{10}(-5) d t+\#_{12}^{12} 5 d t \mathrm{E} \\
& =\frac{1}{20} c: \frac{t}{2}_{2}^{2}{ }_{0}^{10}-56 t 0_{10}^{12}+56 t @_{12}^{20} \mathrm{~m} \\
& =\frac{1}{20}[50-5(2)+5(8)]=\frac{80}{20}=4 \mathrm{~V}
\end{aligned}
$$

Option (A) is correct.
Heaviside mutual inductance bridge measures mutual inductance is terms of a known self-inductance.

Option (C) is correct.
Let $w t=q$, we have instaneous voltage and current as follows.

$$
\begin{aligned}
v(t) & =E_{1} \sin q+E_{3} \sin 3 q \\
i(t) & =I_{1} \sin \left(q-\boldsymbol{f}_{1}\right)+I_{3} \sin \left(3 q-\boldsymbol{f}_{3}\right)+I_{5} \sin (5 q)
\end{aligned}
$$

We know that wattmeter reads the average pozver, which is gives as

$$
\begin{equation*}
P=\frac{\underline{q}}{{ }_{2 p_{0}}} v(t) i(t) d \tag{i}
\end{equation*}
$$

We can sqlve this integration using following results.
(i) $\frac{1}{\#} \#^{p} A \sin (q+a)=B \sin (q+b) d q=\mathbb{I}_{A B} \cos (a-b)$
(ii) $\frac{2 p}{\frac{1}{2 p} \#^{2}{ }^{2} A \sin (q+a)=B \cos (q+a) d q=\stackrel{1}{1}_{A B} \sin (a-b) ~}$
(iii) $\left.\xrightarrow{2} \eta^{\#^{2 p}} \quad q+a\right)=B \cos (n q+b) d q=0$
(iv) $\begin{aligned} & 2 p_{1} \#^{02 p} A \sin (m \\ & 2 p_{0} A \sin \left(m^{q+a}\right)=B \cos (n q+b) d q=0\end{aligned}$

Result (iii) and (iv) implies that power is transferred between same harmonics of voltages and currents. Thus integration of equation (i) gives.

$$
P=\frac{1}{2} E_{1} I_{1} \cos f+\frac{1}{2} E_{3} I_{3} \cos f_{3}
$$

Option (D) is correct.
A voltmeter with a multiplier is shown in figure below.

Here
$I_{m}=$ Fully scale deflection current of meter.
$R_{m}=$ Internal resistance of meter
$R_{s}=$ Voltage across the meter
$V=$ Full range voltage of instrument
$V_{m}=I_{m} R_{m}$

$$
\begin{array}{ll}
\qquad \begin{array}{l}
V \\
\\
\\
\text { Here when, } \\
\text { So, } \\
\text { So }
\end{array} & \left.\frac{V}{V_{m}}=\frac{R_{m}}{}+R_{\underline{s}}+R_{s}\right) \\
R_{m} & 1+\frac{R_{s}}{R_{m}} \\
\text { When, } & \frac{R_{s 1}}{\underline{V}}=20 \mathrm{~kW}, V_{m 1}=440 \mathrm{~V} \\
\text { So, } & 440 \\
& \frac{R_{s 2}}{R_{m}}=80 \mathrm{~kW}, V_{m 2}=352 \mathrm{~V} \\
& 352
\end{array}
$$

Solving equation (i) and (ii), we get

So when

$$
\begin{aligned}
V & =480 \mathrm{~V}, R_{m}=220 \mathrm{~kW} \\
R_{s 3} & =40 \mathrm{~kW}, V_{m 3}=? \\
\frac{480}{V_{m 3}} & =1+\frac{40 \mathrm{k}}{220 \mathrm{k}} \quad \& V_{m 2}-406 \mathrm{~V}
\end{aligned}
$$

Option (A) is correct.
The compensating coil compensation the effect of impedance of current coil.
Option (C) is correct.

Let
so admittance

$$
\begin{gathered}
Z_{1}=R_{1} \| j \mathrm{~W} C_{1} \\
Y_{1}=\frac{1}{1}=-1+j \mathrm{~W} C_{1} \\
Z_{1} \quad R_{1}
\end{gathered}
$$

Let

$$
\begin{aligned}
& Z_{2}=R_{2} \quad \text { and } Z_{4}=R_{4} \\
& Z_{X}=R_{X}+j \mathrm{~W} L_{X} \quad \text { (Unknown impedance) }
\end{aligned}
$$

For current balance condition of the Bridge

$$
Z_{2} Z_{4}=Z_{X} Z_{1}=\frac{Z_{X}}{Y_{1}}
$$

Let

$$
\begin{gathered}
Z_{X}=Z_{2} Z_{4} Y_{1} \\
R_{X}+j \mathrm{w} L_{X}=R_{2} R_{4} \mathrm{~b} \frac{1}{R}+j w C_{1} \mathbf{l}
\end{gathered}
$$

Equating imaginary and real parts

$$
R_{X}=\frac{R_{2} \underline{R}_{4}}{R_{1}} \quad \text { and } L_{X}=R_{2} R_{4} C_{1}
$$

Quality factor of inductance which is being measured

$$
Q=\frac{\mathrm{W} L_{X}}{R_{X}}=\mathrm{W} R_{1} C_{1}
$$

From above equation we can see that for measuring high values of Q we need a large value of resistance R_{4} which is not suitable. This bridge is used for measuring low Q coils.
Note: We can observe directly that this is a maxwell's bridge which is suitable for low values of Q (i.e. $Q<10$)

Sol. 12 Option (C) is correct.
$4 \frac{1}{2}$ digit display will read from 000.00 to 199.99 So error of 10 counts is equal to $=!0.10 \mathrm{~V}$
For 100 V , the maximum error is

$$
e=!(100 \# 0.002+0.1)=\text { ! } 0.3 \mathrm{~V}
$$

$$
\text { Percentage error } \quad=!\frac{0.3 \not \equiv 100}{100} \%=!0.3 \% \text { of reading }
$$

Sol. 13 Option (D) is correct.
Since potential coil is applied across Z_{2} as shown below

Wattmeter read power consumed by Z_{2}
Sol. 14 Option (D) is correct.
Given that full scale current is 5 A

Current in shunt $I 1=I_{R}-I_{f s}=25-5=20 \mathrm{~A}$

$$
\begin{aligned}
20 \# R_{s h} & =5 \# 0.2 \\
R_{s h} & =\frac{1}{20}=.05 \mathrm{~W}
\end{aligned}
$$

Option (A) is correct.
Overall gain of the system is

Gain with error

$$
g=\frac{100}{1+100 \mathrm{~b} \frac{9}{10 \mathrm{~d}}}=10 \text { (zero error) }
$$

$$
g=\frac{100+10 \%}{1+(100+10 \%) \mathrm{b} \frac{9}{100} \mathrm{l}}=\frac{110}{1+\frac{110 \# 9}{100}}=10.091
$$

$$
\text { error } 3 g=10.091-10-0.1
$$

Similarly $\quad g=\frac{100-10 \%}{1+(100-10 \%) \underline{9} 100}=\frac{90 \underline{9}}{1+90 \#{ }_{100}}$
$=9.89$
error $3 g=9.89-10--0.1$
So gain $g=10 \leq 0.1=10 \leq 1 \%$
Option (A) is correct.
At balance condition

$$
\begin{aligned}
&(R+j \mathrm{WL})_{\mathrm{C}} R_{4}<\frac{-j}{\mathrm{WC} \mathrm{~m}}=R_{2} R_{3} \\
&(R+j \mathrm{~W} L) \frac{-j R_{4}}{\mathrm{~W} C_{4}} \\
& \mathrm{c}_{\mathrm{C} R_{4}-\frac{j}{\mathrm{WC}} \mathrm{~m}}=R_{2} R_{3} \\
& \frac{-j R R_{4}}{\mathrm{~W} C_{4}}+\frac{\mathrm{WLR} R_{4}}{\mathrm{~W} C_{4}}=R_{2} R_{3} R_{4}-\frac{j R_{2} R_{3}}{\mathrm{~W} C_{4}} \\
& \frac{-j R R_{4}}{\mathrm{~W} C_{4}}+\frac{L R_{4}}{C_{4}}=R_{2} R_{3} R_{4}-\frac{j R_{2} R_{3}}{\mathrm{~W} C_{4}}
\end{aligned}
$$

Comparing real \& imaginary parts.

$$
\begin{aligned}
\frac{R_{1}}{4} & =\frac{R_{2} R_{3}}{\mathrm{~W}_{4}} \\
\text { Similarly, } \quad & =\frac{R_{2} \underline{R}_{3}}{R_{4}} \\
\frac{L R_{4}}{C_{4}} & =R_{2} R_{3} R_{4} \\
L & =R_{2} R_{3} C_{4}
\end{aligned}
$$

Sol. 17 Option (B) is correct.
Since Potential coil is connected across the load terminal, so it should be highly resistive, so that all the voltage appears across load.
Sol. 18 Option (D) is correct.
A circle is produced when there is a 90c phase difference between vertical and horizontal inputs.

Option (C) is correct.
Wattmeter reading $P \quad=V_{P C} I_{C C}$
$V_{P C}{ }^{"}$ Voltage across potential coil.
$I_{C C}{ }^{\prime \prime}$ Current in current coil.

$$
\begin{aligned}
& V_{P C}=V_{b c}=400+-120 \mathrm{c} \\
& I_{C C}=I_{a c}=\frac{400+120 \mathrm{c}}{100}=4+120 \mathrm{c}
\end{aligned}
$$

Power

$$
\begin{aligned}
P & =400+-120 c \neq 4+120 c \\
& =1600+240 \mathrm{c}=1600 \# \frac{1}{2}=800 \mathrm{Watt}
\end{aligned}
$$

Option (D) is correct.
Average value of a triangular wave

$$
\begin{aligned}
V_{a v} & =\frac{V_{m}}{3} \\
\text { rms value } V_{m s} & =\frac{V_{m}}{\sqrt{3}}
\end{aligned}
$$

Given that

$$
V_{a v}=\frac{V_{m}}{3}=10 \mathrm{~V}
$$

So

$$
V_{r m s}=\frac{V_{m}}{\sqrt{3}}=\sqrt{3} V_{a v}=10 \sqrt{3} \mathrm{~V}
$$

Option (A) is correct.
Conversion time does not depend on input voltage so it remains same for both type of ADCs.

Option (D) is correct.

Frequency ratio $f_{\underline{Y}}=\frac{\text { meeting points of horizontal tangents }}{f_{X}}$ meeting points of vertical tangents

$$
\begin{aligned}
& f_{Y_{-}}=\frac{2}{4} \\
& f_{X}=\frac{1}{2}\left(f_{X}\right) \\
& \mathrm{W}_{2}=\mathrm{W}_{1} / 2
\end{aligned}
$$

Since the Lissajous figures are ellipse, so there is a phase difference of90c exists between vertical and horizontal inputs.
So

$$
q\left(\mathrm{~W}_{2} t\right)=A \cos \mathrm{~W}_{2} t, \mathrm{~W}_{2}=\mathrm{W}_{1} / 2
$$

Option (A) is correct.
Impedance of different branches is given as

$$
\begin{aligned}
Z_{A B} & =500 \mathrm{~W} \\
Z_{B C} & =\frac{1}{j \# 2 \mathrm{p} \# 2 \# 10 \# 0.398 \mathrm{mF}}+300 \mathrm{~W} \\
& -(-200 j+300) \mathrm{W} \\
Z_{A D} & =j \# 2 \mathrm{p} \# 2 \# 10^{3} \# 15.91 \mathrm{mH}+300 \mathrm{~W} \\
& -(200 j+300) \mathrm{W}
\end{aligned}
$$

To balance the bridge

$$
\begin{aligned}
Z_{A B} Z_{C D} & =Z_{A D} Z_{B C} \\
500 Z & =(200 j+300)(-200 j+300)
\end{aligned}
$$

$$
\begin{aligned}
500 Z & =130000 \\
Z & =(260+j 0) \mathrm{W}
\end{aligned}
$$

Option (B) is correct.
Since both the waveform appeared across resistor and inductor are same so the common point is B. Signal Probe S_{1} is connecte with A, S_{2} is connected with C and both the grount probes G_{1} and G_{2} are connected with common point B.

Option (A) is correct.
To balance the bridge

$$
\begin{aligned}
\left(R_{1}+j X_{1}\right)\left(R_{4}-j X_{4}\right) & =R_{2} R_{3} \\
\left(R_{1} R_{4}+X_{1} X_{4}\right)+j\left(X_{4} R_{4}-R_{4} X_{4}\right) & =R_{2} R_{3}
\end{aligned}
$$

comparing real and imaginary parts on both sides of equations

$$
\begin{align*}
& R_{1} R_{4}+X_{1} X_{4}=R_{2} R \tag{1}\\
& X_{1} R_{4}-R_{1} X_{4}=0 \& \frac{X_{1}}{X_{4}}=\frac{R_{1}}{R_{4}}
\end{align*}
$$

from eq(1) and (2) it is clear that for balancing the bridge first balance R_{4} and then R_{1}.

Option (C) is correct.
From the Calibration pulse we can obtain

$$
\frac{\text { Voltage }}{\text { Division }}(3 \mathrm{~V})=\frac{5}{2}=2.5 \mathrm{~V}
$$

$$
\frac{\text { Time }}{\text { Division }}(3 \mathrm{~T})=\frac{1 \mathrm{~ms}}{4}=1_{4} \mathrm{msec}
$$

So amplitude (p-p) of unknown signal is

$$
V_{\mathrm{P}-\mathrm{P}}=3 \mathrm{~V} \# 5=2.5 \# 5=7.5 \mathrm{~V}
$$

Time period $T=3 \mathrm{~T} \# 8=\frac{1}{4} \# 8=2 \mathrm{~ms}$
Option (A) is correct.
Reading of wattmeter (Power) in the circuit

$$
P_{a v}=\frac{1}{T_{0}} \#^{T} \text { VIdt }=\text { Common are between } V-I
$$

total common area $=0($ Positive and negative area are equal $)$
So $P_{a v}=0$
Option (C) is correct.
PMMC instrument reads only dc value so

$$
I_{\mathrm{PMMC}}=-8 \mathrm{~A}
$$

rms meter reads rms value so

$$
I_{r m s}=(-8)^{2}+\frac{(6 \sqrt{2})^{2}}{2}=\sqrt{ } 64+36=10 \mathrm{~A}
$$

Moving iron instrument also reads rms value of current So

$$
I_{\mathrm{MI}}=10 \mathrm{~mA}
$$

Reading are $\left(I_{\text {PMMC }} I_{r m s}, I_{\mathrm{MI}}\right)=(-8 \mathrm{~A}, 10 \mathrm{~A}, 10 \mathrm{~A})$
Sol. 29 Option (D) is correct.

$$
\begin{aligned}
& \text { Given that } \mathrm{W}=\frac{x y}{z} \\
& \qquad \begin{aligned}
\log \mathrm{W} & =\log x+\log y-\log z
\end{aligned}
\end{aligned}
$$

Maximum error in W

$$
\begin{aligned}
\% \frac{d \mathrm{~W}}{\mathrm{~W}} & =!\frac{d x}{x} \geq \frac{d y}{y} \geq \frac{d z}{z} \\
\frac{d x}{x} & =\geq 0.5 \% \text { reading } \\
\frac{d y}{y} & =!1 \% \text { full scale }=!\frac{1}{100} \neq 100=!1
\end{aligned}
$$

$$
\frac{d y}{y}=!\frac{1}{20} \# 100=!5 \% \text { reading }
$$

$$
\frac{d z}{z}=1.5 \% \text { reading }
$$

So

$$
\% \frac{d W}{W}=!0.5 \%!5 \%!1.5 \%=!7 \%
$$

Option () is correct.
Option (B) is correct.

In balanced condition there is no current in CD arm so $V_{C}=V_{D}$
Writing node equation at C and D

$$
\begin{gathered}
\frac{V_{C}-V}{R}+\frac{V_{C}}{R_{3}}=0 \& V_{C}=V \mathrm{~b} \frac{R_{3}}{R_{1}+R_{3}} \mathrm{I} \\
\frac{V_{0}-V}{R}+\frac{V_{D}}{R_{4}}=0 \& V_{D}=V \mathrm{~b} \frac{R_{4}}{R_{2}+R_{4}} \mathrm{I} \\
V \mathrm{~b} \frac{R_{3}}{R_{1}+R_{3}} \mathrm{I}=V \mathrm{~b} \frac{R_{4}}{R_{2}+R_{4}} \mathrm{I} \\
R_{2} R_{3}+R_{3} R_{4}=R_{1} R_{4}+R_{3} R_{4} \\
R_{1}=R_{2} R_{3} / R_{4}
\end{gathered}
$$

So

Option (C) is correct.
Q-meter works on the principle of series resonance.

At resonance $V_{C}=V_{L}$

$$
\begin{gathered}
\text { and } I=\frac{V}{R} \\
\text { Quality factor } \mathrm{Q}=\frac{\mathrm{W} L}{R}=\frac{1}{\mathrm{~W} C R}=\frac{\mathrm{W} L \# I}{R \# I}=\frac{V_{L}}{E}=\frac{V_{C}}{E}
\end{gathered}
$$

Thus, we can obtain Q
Sol. 33 Option (A) is correct.
PMMC instruments reads DC value only so it reads 2 V .
Sol. 34 Option (B) is correct.
Resolution of n-bit DAC $=\frac{V_{f s}}{2^{n}-1}$
So

$$
\begin{aligned}
14 m v & =\frac{3.5 \mathrm{~V}}{2^{n}-1} \\
2^{n}-1 & =\frac{3.5}{14 \# 10^{-3}} \\
2^{n}-1 & =250 \\
2^{n} & =251 \\
n & =8 \mathrm{bit}
\end{aligned}
$$

Sol. 35 Option (B) is correct.
We can obtain the frequency ratio as following

$$
\begin{aligned}
& \frac{f_{Y}}{f_{X}}=\frac{\text { meeting points of horizontal tangents }}{\text { meeting points of vertical tangents }} \\
& \frac{f_{Y}}{f_{X}}=\frac{2}{4} \\
& f_{Y}=\frac{1}{2} f_{X}
\end{aligned}
$$

There should exist a phase difference $(15 \mathrm{c})$ also to produce exact figure of -8 .
Option (C) is correct.
The configuration is shown below

It is given that $I_{m}=100 \mathrm{~A}$
Range is to be extended to $0-500 \mathrm{~A}$,

$$
\begin{aligned}
I & =500 \mathrm{~A} \\
I_{m} R_{m} & =\left(I-I_{m}\right) R_{s h} \\
100 \# 0.1 & =(500-100) R_{s h}
\end{aligned}
$$

So

$$
R_{s h}=\frac{100 \# 0.1}{400}=0.025 \mathrm{~W}
$$

Sol. 37 Option (D) is correct.
The configuration is shown below

Current in voltmeter is given by

$$
I+I_{V}=2 \mathrm{amp}
$$

So

$$
I_{V}=\frac{E}{2000}=\frac{180}{2000}=.09 \mathrm{~A}
$$

$$
\mathrm{I}=2-.09=1.91 \mathrm{~V}
$$

$$
R=\frac{E}{I}=\frac{180}{1.91}=94.24 \mathrm{~W}
$$

Ideally

$$
R_{0}=\frac{180}{2}=90 \mathrm{~W}
$$

$$
\% \text { error }=\frac{R-R_{0}}{R_{0}} \# 100=\frac{94.24-90 \# 100}{90}=4.71 \%
$$

Option (B) is correct. for the dc potentiometer $E \backslash l$
so,

$$
\begin{aligned}
& \frac{E_{1}}{E_{2}}=\frac{l_{1}}{l_{2}} \\
& E_{2}=E_{1} \mathrm{~d}_{l_{2}}^{l_{1}} \mathrm{n}=(1.18) \nRightarrow \frac{680}{600}=1.34 \mathrm{~V}
\end{aligned}
$$

Option (C) is correct.
Let the actual voltage and current are I_{1} and V_{1} respectively, then

Current in CC is 20 A

$$
\begin{aligned}
20 & =I_{1} \mathrm{~b} \frac{1000}{1000+0.02} \mathrm{I} \\
I_{1} & =20.0004 \mathrm{~A}-20 \mathrm{~A} \\
200 & =V_{1}-.02 \nexists 20=200.40
\end{aligned}
$$

Power measured $P_{m}=V_{1} I_{1}=20(200.40)=4008 \mathrm{~W}$
Load power

$$
P_{L}=20 \# 200=4000 \mathrm{~W}
$$

$$
\begin{aligned}
\% \text { Change } & =\underline{P}_{\underline{m}} \frac{-P_{L}}{P_{L}}=\frac{4008-4000}{4000} \neq 100 \\
& =0.2 \% \text { more }
\end{aligned}
$$

Option (C) is correct.
We have to obtain $n=\frac{I}{I_{1}}$

$$
\begin{aligned}
\underline{I}_{1} & =\frac{R_{s h}}{R_{m}}=\frac{100}{1000}=\frac{1}{10} \\
I_{1}+I_{2} & =I \\
I_{1}+10 I_{1} & =I \\
11 I_{1} & =I \\
n & =\frac{I}{I_{1}}=11
\end{aligned}
$$

Option (B) is correct.
In the following configuration

Rectance $\quad X_{c}=\frac{1}{j \omega C}=\frac{1}{2 \mathrm{p} \# 100 \# 10^{3} \# 10 \# 10^{-12}}$
writing node equation at P

$$
V_{\mathrm{P}}-10 V_{\mathrm{P}} 1800 \frac{1}{100}+\frac{1}{50}-\frac{j}{15} \mathrm{l}_{5}=0
$$

$$
\begin{gathered}
10-V_{\mathrm{P}}=V_{P}(1.2-j 0.628) \\
10=(2.2-j 0.628) V_{\mathrm{P}} \\
V_{\mathrm{P}} \frac{10}{2.2} \overline{\overline{8}} 4.38 \mathrm{~V}
\end{gathered}
$$

Option (A) is correct.
The torque on the coil is given by

$$
\dagger=N I B A
$$

$N{ }^{\prime \prime}$ no. of turns,
$\mathrm{N}=100$
$I^{\prime \prime}$ current,
$\mathrm{I}=50 \mathrm{~mA}$
$B^{\prime \prime}$ magnetic field,
$\mathrm{B}=200 \mathrm{mT} A$ " Area,
$\mathrm{A}=10 \mathrm{~mm} \# 20 \mathrm{~mm}$
So,

$$
\begin{aligned}
\dagger & =100 \# 50 \# 10^{-3} \# 200 \# 10^{-3} \# 200 \# 10^{-3} \# 10^{-3} \\
& =200 \# 10^{-6} \mathrm{Nm}
\end{aligned}
$$

Option (C) is correct.
Meter constant (A-sec/ rev) is given by

$$
\begin{aligned}
14.4 & =\frac{\mathrm{I}}{\text { speed }} \\
14.4 & =\frac{\mathrm{I}}{K_{\# \text { Power }}}
\end{aligned}
$$

Where ' K ' is the meter constant in rev / kWh.

$$
\begin{aligned}
14.4 & =\frac{I}{K \# V I} \\
14.4 & =\frac{15}{K \# 15 \# 250} \\
K & =\frac{1}{250 \# 14.4} \\
K & =\frac{1}{\mathrm{~b}_{1000 \# 14.4}^{250}}=\frac{1000 \# 3600}{3600}=1000 \mathrm{rev} / \mathrm{kWh} .
\end{aligned}
$$

Option (B) is correct.
For moving iron ameter full scale torque is given by

$$
\begin{aligned}
\dagger_{C} & =\frac{1}{2} I^{2} \frac{d L}{d \mathrm{q}} \\
240 \# 10^{-6} & =\frac{1}{2}(10)^{2} \frac{d L}{d q}
\end{aligned}
$$

Change in inductance

$$
\frac{d L}{d \mathrm{q}}=4.8 \mathrm{mH} / \text { radian }
$$

Option (B) is correct.
In the figure

$$
\begin{aligned}
& V_{R Y}=415+30 \mathrm{c} \\
& V_{B N}=\frac{415}{\sqrt{3}}+120 \mathrm{c}
\end{aligned}
$$

Current in current coil

$$
\begin{aligned}
I_{C} & =\frac{V_{R Y}}{Z}=\frac{415+30 c}{100+36.87 c} & & \text { power factor }=0.8 \\
& =4.15+-6.87 & & \cos f=0.8 \& f=36.87 c
\end{aligned}
$$

$$
\begin{aligned}
\text { Power } & =V I P=\frac{415}{\sqrt{3}}+120 \mathrm{c} \neq 4.15+6.87 \mathrm{c} \\
& =994.3+126.87 \mathrm{c}
\end{aligned}
$$

Reading of wattmeter

$$
P=994.3^{\wedge} \cos 126.87 \mathrm{ch}=994.3(-0.60)=-597 \mathrm{~W}
$$

Option (A) is correct.
For small values of phase angle

$\qquad \frac{I_{P}}{I_{S}}=n \mathrm{f}$,	$\mathrm{f}^{\prime \prime}$ Phase angle(radians)
n "' turns ratio	
Magnetizing ampere-turns	$=200$

So primary current $I_{P}=200 \# 1=200 \mathrm{amp}$
Turns ratio $n=500$
Secondary current $I_{S}=5 \mathrm{amp}$
So

$$
\frac{200}{5}=500 f
$$

$$
\mathrm{f}(\text { in degrees })=b \frac{180}{\mathrm{p}} \mathrm{Ib} \frac{200}{5 \# 500}
$$

$$
-4.58 c
$$

Option (B) is correct.
Voltage appeared at secondary winding

$$
E_{S}=I_{S} \# Z_{L}=5 \# 1=5 \text { Volts }
$$

Voltage induced is given by

$$
\begin{aligned}
E_{S} & =\sqrt{2} \mathrm{pfNf}, \quad \mathrm{f} \text { " flux } \\
5 & =\sqrt{2} \# 3.14 \# 50 \# 500 \# \mathrm{f} \\
\mathbf{f} & =\frac{5}{\sqrt{2} \# 3.14 \# 25 \# 10^{3}}=45 \# 10^{-6} \mathrm{wb}
\end{aligned}
$$

Option (A) is correct.
In PMCC instruments, as temperature increases the coil resistance increases. Swamp resistors are connected in series with the moving coil to provide temperature compensation. Swamping resistors is made of magnin, which has a zero-temperature coefficient.

Option () is correct.
Effect of stray magnetic field is maximum when the operating field and stray fields are parallel.

Option (A) is correct
Let

$$
\begin{aligned}
C_{1} & =300 \mathrm{pF} \\
Q & =120=\frac{1}{\mathrm{~W} C_{1} R}
\end{aligned}
$$

Now when C_{x} is connected in parallel with variable resistor $C_{1}{ }^{\prime}=200 \mathrm{pF}$

So

$$
\begin{aligned}
Q & =120=\frac{1}{\mathrm{~W}\left(C_{1}^{\prime}+C\right) R} \\
C_{1} & =C_{1}^{\prime}+C_{x} \\
300 & =200+C_{x} \\
C_{x} & =100 \mathrm{pF}
\end{aligned}
$$

Option (B) is correct.
Maximum frequency of input in dual slop A / D converter is given as
where
so

$$
\begin{aligned}
T & =2^{n} T_{C} \\
m & =\frac{1}{T_{m}}{ }^{\prime} \text { maximum frquency of input }
\end{aligned}
$$

$$
\begin{aligned}
f_{m} & =\frac{1}{T_{C}} \cdots \quad \text { clock frequency } \\
f & =\frac{f_{C}}{2^{n}}, \quad n=10
\end{aligned}
$$

$$
f_{m}=
$$

$$
\frac{10^{6}}{1024}=1 \mathrm{kHz} \quad(\text { approax })
$$

Option (A) is correct.
Kelvin Double bridge is used for measuring low values of resistances. (P ${ }^{\text {" }} 2$)
Low values of capacitances is precisely measured by schering bridge ($Q^{\prime \prime} 3$)
Inductance of a coil with large time constant or high quality factor is measured by hay's bridge ($R^{\prime \prime} 5$)
Option (C) is correct.
Full scale deflection is produced by a dc current of 1 mA

$$
\left(I_{d c}\right)_{f s}=1 \mathrm{~mA}
$$

For full wave reactifier

$$
\begin{aligned}
\left(I_{d c}\right)_{f s} & =\frac{2 I_{m}}{\mathrm{p}}, \quad I_{m} \cdot \text { peak value of ac current } \\
1 \mathrm{~mA} & =\frac{2 I_{m_{-}}}{3.14} \\
I_{m} & =1.57 \mathrm{~mA}
\end{aligned}
$$

Full scale ac current

$$
\left(I_{r m s}\right)_{f s}=\frac{1.57}{\sqrt{2}}=1.11 \mathrm{~mA}
$$

$$
\begin{aligned}
V & =\left(R_{s}+R_{m}\right)\left(I_{r m s}\right)_{f s} \\
100 & =\left(R_{s}+100\right)(1.11 \mathrm{~mA}) \\
\frac{100}{(1.11 \mathrm{~mA})} & =R_{s}+100 \\
100 \# 900 & =R_{s}+100
\end{aligned}
$$

$$
R_{s}=89.9 \mathrm{~kW}
$$

Sol. 56 Option (B) is correct.
First the current coil is connected in R-phase and pressure coil is connected between this phase and the neutral as shown below

B 0
Reading of wattmeter

$$
\begin{aligned}
W_{1} & =I_{P} V_{P} \cos \mathrm{q}_{1}, \cos \mathrm{q}_{1}=0.8 \& \mathrm{q}_{1}=36.86 \mathrm{c} \\
400 & =I_{L} \frac{V_{L}}{3} \cos \mathrm{q}_{1} \\
400 & =\frac{I_{L} V_{L}}{3} \# 0.8
\end{aligned}
$$

Now when pressure coil is connected between B and Y-phases, the circuit is

phasor diagram

angle
now wattmeter reading
from equation (1)
so

$$
q_{2}=23.14 c+30 c=54.14 c 2
$$

$$
W_{2}=V_{Y B} I_{L} \cos \mathrm{q}_{2}
$$

$$
V_{L} I_{L}=\frac{400 \# \sqrt{3}}{0.8}
$$

$$
W_{2}=\frac{400}{0.8} \# \cdot / 3 \# \cos 53.14 \mathrm{c}
$$

$$
=519.5 \mathrm{~W}
$$

Option (C) is correct.
In a moving-iron ammeter control torque is given as

$$
\mathrm{t}_{c}=K \mathrm{q}=\frac{1}{2} I^{2} \frac{d \underline{L}}{d \mathrm{q}}
$$

Where
$K^{\prime \prime}$ control spring constant
$q^{\prime \prime}$ deflection

$$
\text { Given that } \begin{aligned}
L & =10+3 \mathrm{q}-\mathrm{q}^{2} \\
\frac{d L}{d \mathrm{q}} & =\mathrm{b} 3-\frac{\mathrm{q}}{2} \mathrm{I} \mathrm{mH} / \mathrm{rad}
\end{aligned}
$$

So,

$$
\begin{aligned}
\mathbf{t}_{c}=\left(25 \# 10^{-6}\right) \mathrm{q} & =\frac{1}{2}(5)^{2} \mathrm{~b} 3-\frac{\mathrm{q}}{2} \mathrm{I} \# 10^{-6} \\
2 \mathrm{q} & =3-\frac{\mathrm{q}}{2} \\
\frac{5 \mathrm{q}}{2}=3 \& \mathrm{q} & =\frac{6}{5}=1.2 \mathrm{rad} .
\end{aligned}
$$

Option (B) is correct.

$$
\begin{aligned}
& \text { Magnetizing current } I_{m}=\frac{250}{1}=250 \mathrm{amp} \\
& \text { Primary current } I_{p}=500 \mathrm{amp} \\
& \text { Secondary current } I_{s}=5 \mathrm{amp} \\
& \text { Turn ratio } n=\frac{I_{p}}{I_{s}}=\frac{500}{5}=100 \\
& \text { Total primary current }\left(I_{T}\right)=\text {, }\left[\text { primary current }\left(\mathrm{I}_{p}\right)\right]^{2}+ \\
&,\left[\text { magnetising current }\left(I_{\mathrm{m}}\right)\right]^{2} \\
& I_{T}=\sqrt{I_{p}^{2}+I_{m}^{2}} \\
&=,(500)^{2}+(250)^{2}=559.01 \mathrm{amp} \\
& \text { Turn ratio } n^{\prime}=\frac{I_{T}}{I_{s}}=\frac{559.01}{5}=111.80 \\
& \text { Percentage ratio error } 3 n=\frac{n-n 1}{n 1} \# 100 \\
&=\frac{100-111.80}{111.80} \neq 100=-10.55 \%
\end{aligned}
$$

Option (C) is correct.
Power read by meter $P_{m}=V I \sin (\mathbf{3}-\mathbf{f})$
Where
$3^{\prime \prime}$ Phase angle between supply voltage and pressure coil flux.
f ' ${ }^{\prime}$ Phase angle of load
Here

$$
3=85 c, f=60 c \quad " a \cos f=0.5
$$

So measured power

P_{m}	$=200 \# 5 \sin (85 \mathrm{c}-60 \mathrm{c})$
	$=1100 \sin 25 \mathrm{c}$
	$=464.88 \mathrm{~W}$
Actual power $\quad P_{O}$	$=V I \cos \mathrm{f}=220 \# 5 \# 0.5=550 \mathrm{~W}$

$$
\text { Error in measurement }=P_{m}-P_{O}=464.88-550=-85.12 \mathrm{~W}
$$

$$
\text { For unity power factor } \cos f=1
$$

$$
f=0 c
$$

So

$$
\begin{aligned}
& P_{m}=220 \# 5 \sin (85 \mathrm{c}-0 \mathrm{c})=1095.81 \mathrm{~W} \\
& P_{O}=220 \# 5 \cos 0 \mathrm{c}=1100
\end{aligned}
$$

Error in Measurement

$$
=1095.81-1100=-4.19 \mathrm{~W}
$$

Option (A) is correct.
We can obtain the Lissaju pattern (in X-Y mode) by following method.
For $f=0 \mathrm{c}$,

$$
\begin{aligned}
& V_{\mathrm{x}}=V_{\mathrm{xm}} \sin \mathrm{~W} t \\
& V_{\mathrm{y}}=V_{\mathrm{ym}} \sin (\mathrm{~W} t+0 \mathrm{c})=\sin \mathrm{W} t
\end{aligned}
$$

Draw V_{x} and V_{y} as shown below
$V_{y}=V_{y m \pi} \sin \omega t$

Divide both V_{y} and V_{x} equal parts and match the corresponding points on the screen.
Similarly for $f=90 \mathrm{c}$

$$
\begin{aligned}
& V_{\mathrm{x}}=V_{\mathrm{xm}} \sin \mathrm{~W} t \\
& V_{\mathrm{y}}=V_{\mathrm{ym}} \sin (\mathrm{~W} t+90 \mathrm{c})
\end{aligned}
$$

Similarly for $f=\frac{3 p}{2}$

we can also obtain for $0<f<\frac{3 p}{2}$

